Noradrenergic modulation of XII motoneuron inspiratory activity does not involve alpha2-receptor inhibition of the Ih current or presynaptic glutamate release.
نویسندگان
چکیده
Norepinephrine has powerful and diverse modulatory effects on hypoglossal (XII) motoneuron activity, which is important in maintaining airway patency. The objective was to test two hypotheses that alpha2-adrenoceptor-mediated, presynaptic inhibition of glutamatergic inspiratory drive (Selvaratnam SR, Parkis MA, and Funk GD. Brain Res 805: 104-115, 1998) and postsynaptic inhibition of the hyperpolarization-activated inward current (Ih) (Parkis MA and Berger AJ. Brain Res 769: 108-118, 1997) modulate XII inspiratory activity. Nerve and whole cell recordings were applied to rhythmic medullary slice preparations from neonatal rats (postnatal days 0-4) to monitor XII inspiratory burst amplitude and motoneuron properties. Application of an alpha2-receptor agonist (clonidine, 1 mM) to the XII nucleus reduced inspiratory burst amplitude to 71 +/- 3% of control but had no effect on inspiratory synaptic currents. It also reduced the Ih current by approximately 40%, but an Ih current blocker (ZD7288), at concentrations that blocked approximately 80% of Ih, had no effect on inspiratory burst amplitude. The clonidine inhibition was unaffected by the GABAA antagonist (+)bicuculline but attenuated by the alpha2-antagonist rauwolscine and the imidazoline 1 (I1) antagonist efaroxan. The I1 agonist rilmenidine, but not the alpha2-agonist UK14304, inhibited XII output. Clonidine also reduced action potential amplitude or impaired repetitive firing. Although a contribution from alpha2, and in particular I1, receptors remains possible, results demonstrate that 1) noradrenergic modulation of XII inspiratory activity is unlikely to involve alpha2-receptor-mediated presynaptic inhibition of glutamate release or modulation of Ih; 2) inhibition of repetitive firing is a major factor underlying the inhibition of XII output by clonidine; and 3) Ih is present in neonatal XII motoneurons but does not contribute to shaping their inspiratory activity.
منابع مشابه
Opiate-Induced Suppression of Rat Hypoglossal Motoneuron Activity and Its Reversal by Ampakine Therapy
BACKGROUND Hypoglossal (XII) motoneurons innervate tongue muscles and are vital for maintaining upper-airway patency during inspiration. Depression of XII nerve activity by opioid analgesics is a significant clinical problem, but underlying mechanisms are poorly understood. Currently there are no suitable pharmacological approaches to counter opiate-induced suppression of XII nerve activity whi...
متن کاملPresynaptic Cell Dependent Modulation of Inhibition in Cortical Regions
Several lines of evidence suggest that the modulation of presynaptic GABA release is mediated by a variety of receptors including; presynaptic AMPA, cannabinoid, GABA(B), kainate, metabotropic glutamate, NMDA, and opioid receptors. The evidence supporting presynaptic modulation of inhibition is predominantly obtained from studying stimulus elicited, spontaneous or miniature synaptic events, whe...
متن کاملP2 receptor excitation of rodent hypoglossal motoneuron activity in vitro and in vivo: a molecular physiological analysis.
The role of P2 receptors in controlling hypoglossal motoneuron (XII MN) output was examined (1) electrophysiologically, via application of ATP to the hypoglossal nucleus of rhythmically active mouse medullary slices and anesthetized adult rats; (2) immunohistochemically, using an antiserum against the P2X2 receptor subunit; and (3) using PCR to identify expression of P2X2 receptor subunits in m...
متن کاملUnexpected inhibitory regulation of glutamate release from rat cerebrocortical nerve terminals by presynaptic 5-hydroxytryptamine-2A receptors.
Presynaptic 5-HT(2A) receptor modulation of glutamate release from rat cerebrocortical nerve terminals (synaptosomes) was investigated by using the 5-HT(2A/2C) receptor agonist (+/-)-1-[2,5-dimethoxy-4-iodophenyl]-2-aminopropane (DOI). DOI potently inhibited 4-aminopyridine (4AP)-evoked glutamate release. Involvement of presynaptic 5-HT(2A) receptors in this modulation of 4AP-evoked release was...
متن کاملNoradrenergic modulation of hypoglossal motoneuron excitability: developmental and putative state-dependent mechanisms.
Hypoglossal (XII) motoneurons (MNs) contribute to diverse behaviors. Their innervation of the genioglossus muscle, a tongue protruder, plays a critical role in maintaining upper airway patency during breathing. Indeed, reduced activity in these motoneurons is implicated in sleep related disorders of breathing such as obstructive sleep apnea (OSA). The excitability of these MNs is modulated by m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 98 4 شماره
صفحات -
تاریخ انتشار 2005